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Self-dual fractal models for the low-field Hall effect near 
percolation threshold 
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College of Engineering, Shizuoka University, Hamamatsu 432, Japan 

Received 11 December 1985 

Abstract. Fractal lattices with the ‘self-duality’ property are proposed to imitate the 
geometric texture of two-dimensional percolating networks at percolation threshold. The 
exponents describing the power law dependence on the scale length of the Hall and Ohmic 
conductivities are found. The exponent for the Hall conductivity agrees with twice that 
for the Ohmic conductivity. The model is extended to describe the approach towards the 
threshold. It is found that the model shows the typical percolation behaviour as a function 
of a parameter p (the bond concentration). 

1. Introduction 

Recently, there has been increasing interest in exact mathematical fractals (Mandelbrot 
1982, Vicsek 1983, Given and Mandelbrot 1983, Ben-Avraham and Havlin 1983, 
Blumenfeld and Aharony 1985, Martin and Keefer 1985). The main reason is that 
solution of many important equations of physics on these lattices adds to our under- 
standing of the goemetric and topological properties that are relevant to modelling the 
corresponding physical processes. The percolating infinite cluster is one of the most 
intensively studied random fractals (Deutscher er al 1983, Stauffer 1979, 1985, Stanley 
and Coniglio 1983, Kirkpatrick 1979, Kapitulnik and Deutscher 1984). Various 
geometrical models have been proposed to imitate the infinite incipient cluster at the 
percolation threshold and it is of great interest in understanding the effects of these 
different geometries on the transport properties near the percolation threshold. Mandel- 
brot (1984a, b) and Mandelbrot and Given (1984) have presented fractal models for 
percolation clusters at criticality. The Mandelbrot models possess the geometric and 
topological properties very close to the infinite cluster at the percolation threshold. 
Nagatani (1985) has proposed a regular model to describe the approach towards the 
threshold pc.  The regular model is possessed of such a property that is self-similar 
(fractal) on smaller length scales than the connectedness length but becomes 
homogeneous on large length scales. 

In this paper we try to imitate the critical behaviour of the Hall effect just above 
the percolation threshold with the help of regular fractals. 

In order to determine the critical behaviour of the Hall conductivity near the 
percolation threshold of an isotropic composite, Bergman (1983) and Bergman er al 
(1983) realised the Hall problem on a two-component discrete lattice as follows: each 
element of the lattice is a doublet of identical conductors with an Ohmic conductance 
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Figure 1. Schematic drawing of a portion of the random-bond resistor networks used to 
realise the Hall effect in a discrete system in two dimensions. ( a )  A doublet of identical 
conductors with Ohmic and Hall conductances. A doublet is each element of the lattice. 
( b )  A square-centred lattice of identical but unconnected mutually perpendicular doublets. 
The 2~ network is composed of two unconnected (but correlated) simple-square resistor 
networks (shown by the full and broken lines respectively). The two networks are electrically 
unconnected in the absence of a magnetic field, but in the presence of a magnetic field 
these are correlated. 

c1 or u2 that lies along the coordinate axes, and which are electrically unconnected in 
the absence of a magnetic field H (see figure 1). In the presence of an H field taken 
to lie along the z axis, a Hall current will flow through a conductor in the x direction 
that depends on its Hall conductance ( A ,  or A 2 )  and on the voltage across the y 
conductor of the same doublet. The two types of doublets are placed randomly at all 
the sites of a square-centred lattice, and electrical connections are made only at the 
cell-edge centres. The random-bond resistor networks are electrically unconnected 
for H = 0 but are correlated with each other by virtue of the doublets for a magnetic 
field along the z axis. The resulting doublet element, when used in constructing a 
random square-centred array, is the only way of obtaining a random array that is 
self-dual. The exact results on two-dimensional systems require this self-duality in 
order to be valid. 

In order to imitate an infinite cluster in this lattice model of the Hall effect, we 
construct regular fractal models with the ‘self-duality’ property. These models consist 
of the branching Koch curves of which the fractal dimensionalities of the infinite 
cluster and its backbone agree with those of the Mandelbrot-Koch curve (Mandelbrot 
and Given 1984). The model is extended to describe the approach by making use of 
a rule of bond deletions on the square-centred lattice (Nagatani 1985). We produce 
simple objects which show the typical percolation behaviour as a function of a 
parameter p (the bond concentration). 

2. Constructions of self-dual fractal lattices 

We begin with the Mandelbrot-Koch curve proposed as the non-random model for 
the infinite cluster at criticality. Its generator is shown in figure 2(a). The fractal 
dimensionalities of the infinite cluster and its backbone are log, 8(-1.893) and 
log, 6( - 1.63 l ) ,  respectively, very close to the known percolation values (Mandelbrot 
and Given 1984, Stauffer 1985). The dual lattice of this model is however not coincident 
with itself. We construct a regular fractal lattice with the ‘self-duality’ property and 
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Figure 2. Generators of the fractals for the infinite cluster. ( a )  The Mandelbrot-Koch 
curve. ( b )  The branching Koch curve with the self-duality property (shown by the full 
lines). The dual lattice is shown by the broken lines. The two fractals shown by ( a )  and 
( b )  have the same fractal dimensionality and the fractal dimensions of those backbones 
also coincide with each other. 

the same fractal dimensionalities as the Mandelbrot-Koch curve. The generator of 
the self-dual fractal model is indicated by the full line in figure 2(b). The dual is 
represented by the broken-line. The second stage of construction of the branching 
Koch curve, drawn with the use of a square initiator ABCD and the generator in figure 
2 ( b ) ,  is shown in figure 3 .  This dual lattice is represented by the broken lines. The 
two lattices, being self-dual with each other and indicated by the full and broken lines, 
are electrically unconnected (for H = 0) but are correlated with each other by virtue 
of the unconnected doublets in the present of a magnetic field H (see figure 1). 

One can construct other self-dual fractal lattices with a different scale factor. The 
generator of the fractal lattice with the scale factor b = 5  is shown in figure 4. The 
fractal dimensionalities of the infinite cluster and its backbone are log, 21 (- 1.892) 
and log, 14( - 1.640) respectively, very close to the known percolation values. 

Figure 3. Second stage of construction of the Koch curve drawn with the use of a square 
initiator ABCD and the generator in figure 2(b) .  This dual lattice is represented by the 
broken lines. The two lattices indicated by the full and broken lines are electrically 
unconnected for H = 0 but are correlated with each other in the presence of a magnetic 
field H. 
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Figure 4. The generator of the fractal lattice with the scale factor b = 5 .  The self-dual 
lattice is shown by the broken lines. The fractal dimensions of the infinite cluster and its 
backbone are D = 1.892 . . . and D, = 1.640. . . respectively. 

3. Renormalisation of conductivities 

Consider now the Koch curve in figure 2 ( b ) .  We must first calculate the total Ohmic 
and Hall conductivities between the endpoints in the x direction (or in the y direction), 
and then derive the exponent describing the power law dependence on scale length L 
of the conductivities. 

In addition to the Ohmic conductance U, of each member a of the unit element, 
there is also a Hall conductance A, and Hall coefficient Ra, connected by 

R,H for a l  H 
A,={() for a) \  H. 

The current J, is given by 

Ja = u a  Va - ha Va x H (2) 
where VaxH is the voltage across another conductor of the same unit element-the 
one that is perpendicular to both a and H. Current conservation at the internal point 
i leads to the following equation for the potentials V, : 

VU( V,  - V,) + C A i j V , , x H  = 0 (3) 
j i j x H  

where the first summation over j indicates the sum over the nearest-neighbour sites to 
i, and the second summation over i j x  H represents the sum over another conductor 
of the same unit element as the ij bond. 

The self-similarity of the lattice on length scales leads to a natural decimation 
procedure. Two parameters are involved in the decimation procedure because of 
different types of conductivities. The idea involves eliminating the lowest scale poten- 
tials in equation (3). This procedure leads to a reduced set of equations describing 
the same physics on a lattice scaled down by a factor b = 3. This exact renormalisation 
leads to two renormalised conductivities. The decimation technique is schematically 
indicated in figure 5 .  The nodes represented by crosses on the left-hand lattice are 
eliminated, producing the renormalised right-hand lattice. The current, flowing through 
the renormalised bond in the x direction (or in the y direction), is given by 

J , = A U ( V , -  VJ-(A)2A(VC- V, )+O(A*)  (4) 
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Figure 5. Schematic representation of the decimation technique for a part of the self-dual 
fractal lattices. The sites denoted by crosses on the left-hand lattices are eliminated, 
producing the right-hand renormalised doublet. 

or 

Jy = A U(  V, - VD) + (5) ’A ( VB - VJ + O( A ‘) 

where we omit the terms of a magnetic field H higher than the first-order term. 
The renormalised Ohmic and low-field Hall conductivities are then given by 

and 

A ’  = (i$)2A. ( 6 )  

The exponents ( t /  v and T /  U), describing the power law dependence on scale length 
L of the Ohmic and Hall conductivities (LPf’”  and L-””) ,  are given by 

t /  v = - log(d/u) / log b = log ?/log 3(-0.9207) (7) 

T / V =  -log(A’/A)/log b = 2 l o g ~ / l o g 3 = 2 ( t / v ) .  (8) 

and 

It is found that the exponent for the low-field Hall conductivity agrees with being 
twice that for the Ohmic conductivity. 

Similarly, for the fractal lattice shown by figure 4, we obtain the exponents of the 
conductivities 

t /  v = log %/log 5(-0.9498) (9) 

T /  v = 2(t /v) .  (10) 

and 

4. The approach towards the threshold 

We extend the fractal model for the infinite cluster at the criticality to describe the 
approach towards the threshold. We produce simple objects which show the typical 
percolation behaviour as a function of a parameter p (the bond concentration). 

In general, every lattice bond has three choices in the bond percolation: it can be 
empty, with probability 1 - p ;  it can be part of the infinite network of occupied bonds, 
with probability pPm (the percolation probability); or it can be part of one of the many 
finite clusters, with probability p (  1 - Pa). The sum of all these probabilities equals 
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unity. As the concentration p approaches the threshold pc ,  the pair connectedness 
length 6 diverges, 6 - ( p  -p , ) -".  To mimic the geometric texture of the percolating 
network just above the percolation threshold, it is necessary that a regular model is 
self-similar (fractal) on smaller length scales than the connectedness length but becomes 
homogeneous on large length scales. 

Now we try to imitate bond percolation with the help of a regular construction. 
The regular model is constructed by the following bond deletions and bond removals. 
Bonds on the square-centred lattice (see figure l (6) )  are recursively deleted via two 
rules and removed by a rule. First, we apply the first rule of bond deletion and the 
rule of bond removal. Two construction stages of our regular model are shown in 
figures 6 ( a )  and (6). Crosses and triangles denote respectively the bonds deleted at 
the first and second stages. The dual lattice is shown by the broken lines. It is self-dual. 
Figure 7 shows part of the self-dual lattices at the third stage ( N  = 3). Full triangles 

la 1 (b) 
Figure 6. Two construction stages of the fractal model with the self-duality property. The 
lattices at the first and second stages are respectively indicated by ( a )  and (b). Crosses 
and triangles denote the bonds deleted at the first and second stages, respectively, according 
to the first rule of bond deletion. 

Figure 7. A part of the self-dual lattices at the third stage. Full triangles denote the bonds 
deleted at the third stage according to the first rule of bond deletion. The bonds marked 
by circles are removed to the nearest-neighbour positions indicated by the full circles and 
connected by the nearest neighbours according to the rule of bond removal. In the upper-left 
quarter in the figure, the lines with length scales smaller than the length of the nine units 
are omitted. 
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denote the bonds deleted at the third stage according to the first rule of bond deletion. 
The bonds marked by circles are removed to the nearest-neighbour positions indicated 
by the full circles and connected by the nearest neighbours according to the rule of 
bond removal. In the upper-left quarter in the figure, the lines with smaller length 
scales than the length of the nine units are omitted. Figure 8 represents part of the 
self-dual lattices obtained at the nth stage ( N  > 3). The bonds indicated by full triangles 
are deleted and the bonds by full circles are removed to the nearest neighbours. The 
lines are omitted with smaller length scales than the length of the 3N-'  units. The 
system obtained at the N stages appears to be a superlattice made by nodes separated 
by a distance of 6 = 3N,  connected by quasi-linear links. Within this model, the 
correlation between two sites at distance r < 6 is via a single link, but this link is a 
branching curve. Schematic representation of the curve obtained by the bond deletions 
and removals is indicated by the lattice on the left-hand side in figure 9. In the limit 
N sufficiently large, the lattice approaches the Koch curve on the right-hand side. The 
differences (indicated by circles) of the left lattice from the right Koch curves disappear. 
The curve is identified as the branching Koch curve shown by figure 2( b). We obtain 
the square lattice with self-similar structures on smaller length scales than the con- 
nectedness length 5 = 3 N .  The concentration c,( N) of bonds, deleted at the Nth stage 
via the first rule of bond deletion, is given by 

c1( N )  = 6 / 9 N  ( N 3 3 )  (11) 

Figure 8. Bond deletions and removals at the Nth stage. The bonds indicated by full 
triangles are deleted and the bonds by full circles are removed to the nearest neighbours. 
The lines are omitted with smaller length scales than the length of the 3N-'  units. 

Figure 9. Schematic representation of the Koch curve obtained by bond deletions and 
removals is indicated by the lattices on the left-hand side. In the limit of N sufficiently 
large, the lattices approach the Koch curves on the right-hand side. The differences 
(indicated by circles) of the left lattices from the right Koch curves disappear. 
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where c,( 1) = $ and c2(2) = &. We obtain the percolating network (infinite cluster) by 
use of the first rule of bond deletion and the rule of bond removal. 

Secondly, we apply the second rule of bond deletion to the resultant lattice. The 
second rule is applied to the islands separated from the percolating network. This rule 
works at stages larger than N = 3. Figures 10 and 11 show the constructions of finite 
clusters from an island separated from the percolating network at the fourth and fifth 
stages ( N  = 4 and 5 )  respectively. The finite clusters are found to be a fractal with the 
initiator and the generator shown by figures 1 2 ( a )  and ( b ) .  The number n(N) of 
bonds per island, deleted at the Nth stage via the second rule of bond deletion, is 

Figure 10. The construction of finite clusters from a island separated from the percolating 
network at the fourth stage ( N  = 4). An island is shown on the left-hand side. Bonds into 
the island indicated by the full triangles are deleted by the second rule. The finite clusters 
on the right-hand side generate. 

Figure 11. The construction of finite clusters from a island separated from the percolating 
network at the fifth stage ( N  = 5 ) .  Bonds into the island indicated by the full triangles 
and circles are deleted by the second rule. The finite clusters on the right-hand side generate. 

I 

ka I (61 

Figure 12. ( a )  The initiator and ( b )  the generator for finite clusters. 
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where n2(3) = 0. The concentration c2( N )  of bonds is obtained by 

CZ(N) = n*(N)/9N ( N z - 4 ) .  (13 )  

The concentration p ( N )  of bonds after N stages is given by 

When N is infinitely large, the concentration p approaches the critical value pc:  

p c =  lim p(N)=1-(40/81)-(158/19683) -(16/19683) 
N-ac; 

= 803/ 1620( = 0.4956 . . .). ( 1 5 )  

The connectedness length diverges as 

5- (P - P J ”  and ~=0.5/(1-10g2/10g3)(=1.3547..  .). (17) 
The value for the correlation length exponent agrees with that derived in a completely 
different fashion by Klein et al (1978) and was then thought to be perhaps exact. The 
most important feature of the regular model described above is that it is possible to 
get explicit expressions for the quantities characterising the approach towards the 
percolation threshold. The regular model is self-similar (fractal) on smaller length 
scales than the connectedness length, but becomes a homogeneous square lattice on 
large length scales. Our model is possessed of characteristic properties that the infinite 
cluster is composed of a backbone through which electrical current flows and dangling 
bonds hang on it and the backbone consists of multiply connected ‘blobs’ joined 
by singly connected ‘links’. The self-similar structure of the regular model is constructed 
by hierarchical extrapolation. The generator of the fractal is given by the Koch curve 
shown in figure 2( b ) .  The exponents, describing the power law dependence on scale 
length L of the Ohmic and Hall conductivities, are given by equations (7)  and (8). By 
assuming the Einstein relation the spectral dimension d,  is given by d,  = log 64/log 22 
(= 1.3454.. .) (Alexander and Orbach 1982, Alexander 1983). 

The other important feature of the regular model is that it is possible to get explicit 
expressions for the quantities characterising the statistics of clusters defined in percola- 
tion. In order to obtain the cluster size distribution, one should note that the largest 
clusters generated in the kth stage of the process of bond deletions contain s( k) - ( 8 ) k  
bonds. For s < ( 3 D ) N  the cluster size distribution consists of a sum of delta functions: 

(18) 

n, - ( 1 / 9 ) ~ ( 1 / 3 ” ) ~ e ( i  - ~ / ( 3 ~ ) ~ ) .  (19) 

n, - s -“e( i  - s / s ~ )  (20) 

N 

n, - c (i/9)k Nfk (2/9)n a ( S  - ( 3 ~ ) k ) q i -  S / ( ~ D ) N ) .  
k = l  Lo ) 

By spreading the delta functions over the interval we obtain 

Taking into account that s - (3D)k, one can arrive at the scaling form 
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with ~ ' = l f l o g 9 / l o g 8 = 1 + d / D  where ~ ~ - ( 3 ~ ) ~ - ( p - p ~ ) - " ~ ,  so l / c r = v D  is 
obtained. The scaling law p /  U = d - D is then satisfied. Our critical exponents are 
very close to the exact ones. 

5. Summary 

We present the fractal models with the self-dual property for the low-field Hall effect 
near percolation threshold. Two-dimensional percolation can be imitated by the regular 
model. The regular construction of percolation, to simulate the scaling properties in 
the two-dimensional bond percolation, is shown to be possessed of characteristic 
properties of the infinite and finite clusters. It is found that the model shows the typical 
percolation behaviour as a function of a parameter p .  Table 1 lists the geometric and 
physical properties determined analytically by our fractal model. In table 1, the second 
line shows estimated scaling exponents for the two-dimensional (random) percolation 
to compare more completely our results with those of random percolation. Our critical 
exponents are very close to the exact ones. 

Table 1. List of the physical and geometric properties of our regular model compared with 
other sources: "Stauffer (1985); bKapitulnik and Deutscher (1984); 'Herrmann and Stanley 
(1984); dHermann er a1 (1984); 'Lobb and Frank (1984); 'Bergman (1983). 

80311620 OS/( 1 -log3 2) 1 +log8 9 log, 8 log, 6 log, 2tfv 

0.5" 1.33" 2.05" 1 .90b 1.62' 0.97d*e 2r /  V' 
(0.4956) (1.354) (2.056) (1.892) (1.630) (0.9207) 
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